Copied to
clipboard

G = C323GL2(𝔽3)  order 432 = 24·33

2nd semidirect product of C32 and GL2(𝔽3) acting via GL2(𝔽3)/Q8=S3

non-abelian, soluble

Aliases: C323GL2(𝔽3), (C3×C6).8S4, Q8⋊He32C2, C6.18(C3⋊S4), Q8⋊(He3⋊C2), (Q8×C32)⋊4S3, C3.3(C6.6S4), (C3×SL2(𝔽3))⋊3S3, C2.3(C32⋊S4), (C3×Q8).7(C3⋊S3), SmallGroup(432,258)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8Q8⋊He3 — C323GL2(𝔽3)
C1C2Q8C3×Q8Q8×C32Q8⋊He3 — C323GL2(𝔽3)
Q8⋊He3 — C323GL2(𝔽3)
C1C6

Generators and relations for C323GL2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=e3=f2=1, d2=c2, ab=ba, ac=ca, ad=da, eae-1=ab-1, faf=a-1, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf=c-1, ece-1=cd, fcf=c2d, ede-1=c, fef=e-1 >

Subgroups: 616 in 86 conjugacy classes, 14 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, SL2(𝔽3), D12, C3×D4, C3×Q8, C3×Q8, He3, C3×C12, S3×C6, Q82S3, C3×SD16, GL2(𝔽3), He3⋊C2, C2×He3, C3×C3⋊C8, C3×SL2(𝔽3), C3×D12, Q8×C32, C2×He3⋊C2, C3×Q82S3, C3×GL2(𝔽3), Q8⋊He3, C323GL2(𝔽3)
Quotients: C1, C2, S3, C3⋊S3, S4, GL2(𝔽3), He3⋊C2, C3⋊S4, C6.6S4, C32⋊S4, C323GL2(𝔽3)

Character table of C323GL2(𝔽3)

 class 12A2B3A3B3C3D3E3F46A6B6C6D6E6F6G6H8A8B12A12B12C12D12E24A24B24C24D
 size 11361162424246116242424363618186612121218181818
ρ111111111111111111111111111111    trivial
ρ211-11111111111111-1-1-1-111111-1-1-1-1    linear of order 2
ρ322022-1-1-12222-1-1-12000022-1-1-10000    orthogonal lifted from S3
ρ422022-12-1-1222-1-12-1000022-1-1-10000    orthogonal lifted from S3
ρ5220222-1-1-12222-1-1-10000222220000    orthogonal lifted from S3
ρ622022-1-12-1222-12-1-1000022-1-1-10000    orthogonal lifted from S3
ρ72-20222-1-1-10-2-2-211100-2--200000--2-2-2--2    complex lifted from GL2(𝔽3)
ρ82-20222-1-1-10-2-2-211100--2-200000-2--2--2-2    complex lifted from GL2(𝔽3)
ρ933-1333000-1333000-1-111-1-1-1-1-11111    orthogonal lifted from S4
ρ10331333000-133300011-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S4
ρ1133-1-3+3-3/2-3-3-3/20000-1-3-3-3/2-3+3-3/20000ζ65ζ611ζ65ζ6-1--3-1+-32ζ32ζ32ζ3ζ3    complex lifted from C32⋊S4
ρ12331-3-3-3/2-3+3-3/20000-1-3+3-3/2-3-3-3/20000ζ32ζ3-1-1ζ6ζ65-1+-3-1--32ζ65ζ65ζ6ζ6    complex lifted from C32⋊S4
ρ13331-3+3-3/2-3-3-3/20000-1-3-3-3/2-3+3-3/20000ζ3ζ32-1-1ζ65ζ6-1--3-1+-32ζ6ζ6ζ65ζ65    complex lifted from C32⋊S4
ρ14331-3-3-3/2-3+3-3/200003-3+3-3/2-3-3-3/20000ζ32ζ311-3-3-3/2-3+3-3/2000ζ3ζ3ζ32ζ32    complex lifted from He3⋊C2
ρ1533-1-3-3-3/2-3+3-3/20000-1-3+3-3/2-3-3-3/20000ζ6ζ6511ζ6ζ65-1+-3-1--32ζ3ζ3ζ32ζ32    complex lifted from C32⋊S4
ρ1633-1-3+3-3/2-3-3-3/200003-3-3-3/2-3+3-3/20000ζ65ζ6-1-1-3+3-3/2-3-3-3/2000ζ6ζ6ζ65ζ65    complex lifted from He3⋊C2
ρ1733-1-3-3-3/2-3+3-3/200003-3+3-3/2-3-3-3/20000ζ6ζ65-1-1-3-3-3/2-3+3-3/2000ζ65ζ65ζ6ζ6    complex lifted from He3⋊C2
ρ18331-3+3-3/2-3-3-3/200003-3-3-3/2-3+3-3/20000ζ3ζ3211-3+3-3/2-3-3-3/2000ζ32ζ32ζ3ζ3    complex lifted from He3⋊C2
ρ194-4044-21-210-4-422-1-10000000000000    orthogonal lifted from C6.6S4
ρ204-404441110-4-4-4-1-1-10000000000000    orthogonal lifted from GL2(𝔽3)
ρ214-4044-211-20-4-42-1-120000000000000    orthogonal lifted from C6.6S4
ρ224-4044-2-2110-4-42-12-10000000000000    orthogonal lifted from C6.6S4
ρ2366066-3000-266-30000000-2-21110000    orthogonal lifted from C3⋊S4
ρ24660-3+3-3-3-3-30000-2-3-3-3-3+3-3000000001--31+-31+-31--3-20000    complex lifted from C32⋊S4
ρ25660-3-3-3-3+3-30000-2-3+3-3-3-3-3000000001+-31--31--31+-3-20000    complex lifted from C32⋊S4
ρ266-60-3-3-3-3+3-3000003-3-33+3-3000000-2--200000ζ87ζ385ζ3ζ83ζ38ζ3ζ83ζ328ζ32ζ87ζ3285ζ32    complex faithful
ρ276-60-3+3-3-3-3-3000003+3-33-3-3000000-2--200000ζ87ζ3285ζ32ζ83ζ328ζ32ζ83ζ38ζ3ζ87ζ385ζ3    complex faithful
ρ286-60-3-3-3-3+3-3000003-3-33+3-3000000--2-200000ζ83ζ38ζ3ζ87ζ385ζ3ζ87ζ3285ζ32ζ83ζ328ζ32    complex faithful
ρ296-60-3+3-3-3-3-3000003+3-33-3-3000000--2-200000ζ83ζ328ζ32ζ87ζ3285ζ32ζ87ζ385ζ3ζ83ζ38ζ3    complex faithful

Smallest permutation representation of C323GL2(𝔽3)
On 72 points
Generators in S72
(1 56 32)(2 53 29)(3 54 30)(4 55 31)(5 51 27)(6 52 28)(7 49 25)(8 50 26)(9 57 33)(10 58 34)(11 59 35)(12 60 36)(13 61 37)(14 62 38)(15 63 39)(16 64 40)(17 65 41)(18 66 42)(19 67 43)(20 68 44)(21 69 45)(22 70 46)(23 71 47)(24 72 48)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 67 59)(6 68 60)(7 65 57)(8 66 58)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 49 41)(34 50 42)(35 51 43)(36 52 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 11 3 9)(2 10 4 12)(5 70 7 72)(6 69 8 71)(13 18 15 20)(14 17 16 19)(21 26 23 28)(22 25 24 27)(29 34 31 36)(30 33 32 35)(37 42 39 44)(38 41 40 43)(45 50 47 52)(46 49 48 51)(53 58 55 60)(54 57 56 59)(61 66 63 68)(62 65 64 67)
(2 11 10)(4 9 12)(5 66 53)(6 63 57)(7 68 55)(8 61 59)(13 19 18)(15 17 20)(21 27 26)(23 25 28)(29 43 50)(30 38 46)(31 41 52)(32 40 48)(33 44 47)(34 37 51)(35 42 45)(36 39 49)(54 70 62)(56 72 64)(58 69 67)(60 71 65)
(1 3)(2 11)(4 9)(5 45)(6 52)(7 47)(8 50)(13 19)(14 16)(15 17)(21 27)(22 24)(23 25)(29 59)(30 56)(31 57)(32 54)(33 55)(34 58)(35 53)(36 60)(37 67)(38 64)(39 65)(40 62)(41 63)(42 66)(43 61)(44 68)(46 72)(48 70)(49 71)(51 69)

G:=sub<Sym(72)| (1,56,32)(2,53,29)(3,54,30)(4,55,31)(5,51,27)(6,52,28)(7,49,25)(8,50,26)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,67,59)(6,68,60)(7,65,57)(8,66,58)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,11,3,9)(2,10,4,12)(5,70,7,72)(6,69,8,71)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,50,47,52)(46,49,48,51)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67), (2,11,10)(4,9,12)(5,66,53)(6,63,57)(7,68,55)(8,61,59)(13,19,18)(15,17,20)(21,27,26)(23,25,28)(29,43,50)(30,38,46)(31,41,52)(32,40,48)(33,44,47)(34,37,51)(35,42,45)(36,39,49)(54,70,62)(56,72,64)(58,69,67)(60,71,65), (1,3)(2,11)(4,9)(5,45)(6,52)(7,47)(8,50)(13,19)(14,16)(15,17)(21,27)(22,24)(23,25)(29,59)(30,56)(31,57)(32,54)(33,55)(34,58)(35,53)(36,60)(37,67)(38,64)(39,65)(40,62)(41,63)(42,66)(43,61)(44,68)(46,72)(48,70)(49,71)(51,69)>;

G:=Group( (1,56,32)(2,53,29)(3,54,30)(4,55,31)(5,51,27)(6,52,28)(7,49,25)(8,50,26)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,67,59)(6,68,60)(7,65,57)(8,66,58)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,11,3,9)(2,10,4,12)(5,70,7,72)(6,69,8,71)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,50,47,52)(46,49,48,51)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67), (2,11,10)(4,9,12)(5,66,53)(6,63,57)(7,68,55)(8,61,59)(13,19,18)(15,17,20)(21,27,26)(23,25,28)(29,43,50)(30,38,46)(31,41,52)(32,40,48)(33,44,47)(34,37,51)(35,42,45)(36,39,49)(54,70,62)(56,72,64)(58,69,67)(60,71,65), (1,3)(2,11)(4,9)(5,45)(6,52)(7,47)(8,50)(13,19)(14,16)(15,17)(21,27)(22,24)(23,25)(29,59)(30,56)(31,57)(32,54)(33,55)(34,58)(35,53)(36,60)(37,67)(38,64)(39,65)(40,62)(41,63)(42,66)(43,61)(44,68)(46,72)(48,70)(49,71)(51,69) );

G=PermutationGroup([[(1,56,32),(2,53,29),(3,54,30),(4,55,31),(5,51,27),(6,52,28),(7,49,25),(8,50,26),(9,57,33),(10,58,34),(11,59,35),(12,60,36),(13,61,37),(14,62,38),(15,63,39),(16,64,40),(17,65,41),(18,66,42),(19,67,43),(20,68,44),(21,69,45),(22,70,46),(23,71,47),(24,72,48)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,67,59),(6,68,60),(7,65,57),(8,66,58),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,49,41),(34,50,42),(35,51,43),(36,52,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,11,3,9),(2,10,4,12),(5,70,7,72),(6,69,8,71),(13,18,15,20),(14,17,16,19),(21,26,23,28),(22,25,24,27),(29,34,31,36),(30,33,32,35),(37,42,39,44),(38,41,40,43),(45,50,47,52),(46,49,48,51),(53,58,55,60),(54,57,56,59),(61,66,63,68),(62,65,64,67)], [(2,11,10),(4,9,12),(5,66,53),(6,63,57),(7,68,55),(8,61,59),(13,19,18),(15,17,20),(21,27,26),(23,25,28),(29,43,50),(30,38,46),(31,41,52),(32,40,48),(33,44,47),(34,37,51),(35,42,45),(36,39,49),(54,70,62),(56,72,64),(58,69,67),(60,71,65)], [(1,3),(2,11),(4,9),(5,45),(6,52),(7,47),(8,50),(13,19),(14,16),(15,17),(21,27),(22,24),(23,25),(29,59),(30,56),(31,57),(32,54),(33,55),(34,58),(35,53),(36,60),(37,67),(38,64),(39,65),(40,62),(41,63),(42,66),(43,61),(44,68),(46,72),(48,70),(49,71),(51,69)]])

Matrix representation of C323GL2(𝔽3) in GL5(𝔽73)

10000
01000
0069568
00334140
00284536
,
10000
01000
00800
00080
00008
,
5744000
2916000
000721
000720
001720
,
4556000
2928000
007200
007201
007210
,
2828000
5744000
00010
00001
00100
,
721000
01000
00010
00100
00001

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,69,33,28,0,0,5,41,45,0,0,68,40,36],[1,0,0,0,0,0,1,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[57,29,0,0,0,44,16,0,0,0,0,0,0,0,1,0,0,72,72,72,0,0,1,0,0],[45,29,0,0,0,56,28,0,0,0,0,0,72,72,72,0,0,0,0,1,0,0,0,1,0],[28,57,0,0,0,28,44,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;

C323GL2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2\rtimes_3{\rm GL}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2:3GL(2,3)");
// GroupNames label

G:=SmallGroup(432,258);
// by ID

G=gap.SmallGroup(432,258);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,57,254,261,3784,5681,172,2273,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=f^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f=c^-1,e*c*e^-1=c*d,f*c*f=c^2*d,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations

Export

Character table of C323GL2(𝔽3) in TeX

׿
×
𝔽