Aliases: C32⋊3GL2(𝔽3), (C3×C6).8S4, Q8⋊He3⋊2C2, C6.18(C3⋊S4), Q8⋊(He3⋊C2), (Q8×C32)⋊4S3, C3.3(C6.6S4), (C3×SL2(𝔽3))⋊3S3, C2.3(C32⋊S4), (C3×Q8).7(C3⋊S3), SmallGroup(432,258)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C3×Q8 — Q8⋊He3 — C32⋊3GL2(𝔽3) |
Q8⋊He3 — C32⋊3GL2(𝔽3) |
Generators and relations for C32⋊3GL2(𝔽3)
G = < a,b,c,d,e,f | a3=b3=c4=e3=f2=1, d2=c2, ab=ba, ac=ca, ad=da, eae-1=ab-1, faf=a-1, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf=c-1, ece-1=cd, fcf=c2d, ede-1=c, fef=e-1 >
Subgroups: 616 in 86 conjugacy classes, 14 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, SL2(𝔽3), D12, C3×D4, C3×Q8, C3×Q8, He3, C3×C12, S3×C6, Q8⋊2S3, C3×SD16, GL2(𝔽3), He3⋊C2, C2×He3, C3×C3⋊C8, C3×SL2(𝔽3), C3×D12, Q8×C32, C2×He3⋊C2, C3×Q8⋊2S3, C3×GL2(𝔽3), Q8⋊He3, C32⋊3GL2(𝔽3)
Quotients: C1, C2, S3, C3⋊S3, S4, GL2(𝔽3), He3⋊C2, C3⋊S4, C6.6S4, C32⋊S4, C32⋊3GL2(𝔽3)
Character table of C32⋊3GL2(𝔽3)
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 1 | 1 | 6 | 24 | 24 | 24 | 6 | 1 | 1 | 6 | 24 | 24 | 24 | 36 | 36 | 18 | 18 | 6 | 6 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | -2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ8 | 2 | -2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ9 | 3 | 3 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ10 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ11 | 3 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 1 | 1 | ζ65 | ζ6 | -1-√-3 | -1+√-3 | 2 | ζ32 | ζ32 | ζ3 | ζ3 | complex lifted from C32⋊S4 |
ρ12 | 3 | 3 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | -1 | -1 | ζ6 | ζ65 | -1+√-3 | -1-√-3 | 2 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C32⋊S4 |
ρ13 | 3 | 3 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | -1 | -1 | ζ65 | ζ6 | -1-√-3 | -1+√-3 | 2 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C32⋊S4 |
ρ14 | 3 | 3 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ3 | ζ3 | ζ32 | ζ32 | complex lifted from He3⋊C2 |
ρ15 | 3 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 1 | 1 | ζ6 | ζ65 | -1+√-3 | -1-√-3 | 2 | ζ3 | ζ3 | ζ32 | ζ32 | complex lifted from C32⋊S4 |
ρ16 | 3 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from He3⋊C2 |
ρ17 | 3 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from He3⋊C2 |
ρ18 | 3 | 3 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ32 | ζ32 | ζ3 | ζ3 | complex lifted from He3⋊C2 |
ρ19 | 4 | -4 | 0 | 4 | 4 | -2 | 1 | -2 | 1 | 0 | -4 | -4 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.6S4 |
ρ20 | 4 | -4 | 0 | 4 | 4 | 4 | 1 | 1 | 1 | 0 | -4 | -4 | -4 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ21 | 4 | -4 | 0 | 4 | 4 | -2 | 1 | 1 | -2 | 0 | -4 | -4 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.6S4 |
ρ22 | 4 | -4 | 0 | 4 | 4 | -2 | -2 | 1 | 1 | 0 | -4 | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.6S4 |
ρ23 | 6 | 6 | 0 | 6 | 6 | -3 | 0 | 0 | 0 | -2 | 6 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊S4 |
ρ24 | 6 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | -2 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 1+√-3 | 1-√-3 | -2 | 0 | 0 | 0 | 0 | complex lifted from C32⋊S4 |
ρ25 | 6 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | -2 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 1-√-3 | 1+√-3 | -2 | 0 | 0 | 0 | 0 | complex lifted from C32⋊S4 |
ρ26 | 6 | -6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 3-3√-3 | 3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | complex faithful |
ρ27 | 6 | -6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 3+3√-3 | 3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | complex faithful |
ρ28 | 6 | -6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 3-3√-3 | 3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | complex faithful |
ρ29 | 6 | -6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 3+3√-3 | 3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | complex faithful |
(1 56 32)(2 53 29)(3 54 30)(4 55 31)(5 51 27)(6 52 28)(7 49 25)(8 50 26)(9 57 33)(10 58 34)(11 59 35)(12 60 36)(13 61 37)(14 62 38)(15 63 39)(16 64 40)(17 65 41)(18 66 42)(19 67 43)(20 68 44)(21 69 45)(22 70 46)(23 71 47)(24 72 48)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 67 59)(6 68 60)(7 65 57)(8 66 58)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 49 41)(34 50 42)(35 51 43)(36 52 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 11 3 9)(2 10 4 12)(5 70 7 72)(6 69 8 71)(13 18 15 20)(14 17 16 19)(21 26 23 28)(22 25 24 27)(29 34 31 36)(30 33 32 35)(37 42 39 44)(38 41 40 43)(45 50 47 52)(46 49 48 51)(53 58 55 60)(54 57 56 59)(61 66 63 68)(62 65 64 67)
(2 11 10)(4 9 12)(5 66 53)(6 63 57)(7 68 55)(8 61 59)(13 19 18)(15 17 20)(21 27 26)(23 25 28)(29 43 50)(30 38 46)(31 41 52)(32 40 48)(33 44 47)(34 37 51)(35 42 45)(36 39 49)(54 70 62)(56 72 64)(58 69 67)(60 71 65)
(1 3)(2 11)(4 9)(5 45)(6 52)(7 47)(8 50)(13 19)(14 16)(15 17)(21 27)(22 24)(23 25)(29 59)(30 56)(31 57)(32 54)(33 55)(34 58)(35 53)(36 60)(37 67)(38 64)(39 65)(40 62)(41 63)(42 66)(43 61)(44 68)(46 72)(48 70)(49 71)(51 69)
G:=sub<Sym(72)| (1,56,32)(2,53,29)(3,54,30)(4,55,31)(5,51,27)(6,52,28)(7,49,25)(8,50,26)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,67,59)(6,68,60)(7,65,57)(8,66,58)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,11,3,9)(2,10,4,12)(5,70,7,72)(6,69,8,71)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,50,47,52)(46,49,48,51)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67), (2,11,10)(4,9,12)(5,66,53)(6,63,57)(7,68,55)(8,61,59)(13,19,18)(15,17,20)(21,27,26)(23,25,28)(29,43,50)(30,38,46)(31,41,52)(32,40,48)(33,44,47)(34,37,51)(35,42,45)(36,39,49)(54,70,62)(56,72,64)(58,69,67)(60,71,65), (1,3)(2,11)(4,9)(5,45)(6,52)(7,47)(8,50)(13,19)(14,16)(15,17)(21,27)(22,24)(23,25)(29,59)(30,56)(31,57)(32,54)(33,55)(34,58)(35,53)(36,60)(37,67)(38,64)(39,65)(40,62)(41,63)(42,66)(43,61)(44,68)(46,72)(48,70)(49,71)(51,69)>;
G:=Group( (1,56,32)(2,53,29)(3,54,30)(4,55,31)(5,51,27)(6,52,28)(7,49,25)(8,50,26)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,67,59)(6,68,60)(7,65,57)(8,66,58)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,11,3,9)(2,10,4,12)(5,70,7,72)(6,69,8,71)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,50,47,52)(46,49,48,51)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67), (2,11,10)(4,9,12)(5,66,53)(6,63,57)(7,68,55)(8,61,59)(13,19,18)(15,17,20)(21,27,26)(23,25,28)(29,43,50)(30,38,46)(31,41,52)(32,40,48)(33,44,47)(34,37,51)(35,42,45)(36,39,49)(54,70,62)(56,72,64)(58,69,67)(60,71,65), (1,3)(2,11)(4,9)(5,45)(6,52)(7,47)(8,50)(13,19)(14,16)(15,17)(21,27)(22,24)(23,25)(29,59)(30,56)(31,57)(32,54)(33,55)(34,58)(35,53)(36,60)(37,67)(38,64)(39,65)(40,62)(41,63)(42,66)(43,61)(44,68)(46,72)(48,70)(49,71)(51,69) );
G=PermutationGroup([[(1,56,32),(2,53,29),(3,54,30),(4,55,31),(5,51,27),(6,52,28),(7,49,25),(8,50,26),(9,57,33),(10,58,34),(11,59,35),(12,60,36),(13,61,37),(14,62,38),(15,63,39),(16,64,40),(17,65,41),(18,66,42),(19,67,43),(20,68,44),(21,69,45),(22,70,46),(23,71,47),(24,72,48)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,67,59),(6,68,60),(7,65,57),(8,66,58),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,49,41),(34,50,42),(35,51,43),(36,52,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,11,3,9),(2,10,4,12),(5,70,7,72),(6,69,8,71),(13,18,15,20),(14,17,16,19),(21,26,23,28),(22,25,24,27),(29,34,31,36),(30,33,32,35),(37,42,39,44),(38,41,40,43),(45,50,47,52),(46,49,48,51),(53,58,55,60),(54,57,56,59),(61,66,63,68),(62,65,64,67)], [(2,11,10),(4,9,12),(5,66,53),(6,63,57),(7,68,55),(8,61,59),(13,19,18),(15,17,20),(21,27,26),(23,25,28),(29,43,50),(30,38,46),(31,41,52),(32,40,48),(33,44,47),(34,37,51),(35,42,45),(36,39,49),(54,70,62),(56,72,64),(58,69,67),(60,71,65)], [(1,3),(2,11),(4,9),(5,45),(6,52),(7,47),(8,50),(13,19),(14,16),(15,17),(21,27),(22,24),(23,25),(29,59),(30,56),(31,57),(32,54),(33,55),(34,58),(35,53),(36,60),(37,67),(38,64),(39,65),(40,62),(41,63),(42,66),(43,61),(44,68),(46,72),(48,70),(49,71),(51,69)]])
Matrix representation of C32⋊3GL2(𝔽3) ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 69 | 5 | 68 |
0 | 0 | 33 | 41 | 40 |
0 | 0 | 28 | 45 | 36 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 8 |
57 | 44 | 0 | 0 | 0 |
29 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 0 |
45 | 56 | 0 | 0 | 0 |
29 | 28 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 1 |
0 | 0 | 72 | 1 | 0 |
28 | 28 | 0 | 0 | 0 |
57 | 44 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
72 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,69,33,28,0,0,5,41,45,0,0,68,40,36],[1,0,0,0,0,0,1,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[57,29,0,0,0,44,16,0,0,0,0,0,0,0,1,0,0,72,72,72,0,0,1,0,0],[45,29,0,0,0,56,28,0,0,0,0,0,72,72,72,0,0,0,0,1,0,0,0,1,0],[28,57,0,0,0,28,44,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C32⋊3GL2(𝔽3) in GAP, Magma, Sage, TeX
C_3^2\rtimes_3{\rm GL}_2({\mathbb F}_3)
% in TeX
G:=Group("C3^2:3GL(2,3)");
// GroupNames label
G:=SmallGroup(432,258);
// by ID
G=gap.SmallGroup(432,258);
# by ID
G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,57,254,261,3784,5681,172,2273,3414,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=f^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f=c^-1,e*c*e^-1=c*d,f*c*f=c^2*d,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations
Export